A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A–D–A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D–A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D–A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
  
 
The influence of the length of the push–pull branches of quadrupolar molecules on their excited-state symmetry breaking was investigated using ultrafast time-resolved IR spectroscopy. For this, the excited-state dynamics of an A-π-D-π-A molecule was compared with those of an ADA analogue, where the same electron donor (D) and acceptor (A) subunits are directly linked without a phenylethynyl π-spacer. The spatial distribution of the excitation was visualized in real time by monitoring C≡C and C≡N vibrational modes localized in the spacer and acceptor units, respectively. In nonpolar solvents, the excited state is quadrupolar and the excitation is localized on the π-D-π center. In medium polarity solvents, the excitation spreads over the entire molecule but is no longer symmetric. Finally, in the most polar solvents, the excitation localizes on a single D-π-A branch, contrary to the ADA analogue where symmetry breaking is only partial.
  
Symmetry-breaking charge transfer upon photoexcitation of a linear A-π-D-π-A molecule (D and A being electron donating and accepting groups) could be visualized using ultrafast time-resolved infrared spectroscopy by monitoring the CN stretching modes on the A units. Whereas in apolar solvents, the S1 state remains symmetric and quadrupolar, symmetry breaking occurs within ca. 100 fs in polar solvents as shown by the presence of two CN bands, instead of one in apolar solvents, with a splitting that increases with polarity. In protic solvents, symmetry breaking is significantly amplified by H-bonding interactions, which are the strongest at the CN group with the highest basicity. In strongly protic solvents, the two CN bands transform in about 20 ps into new bands with a larger splitting, and the lifetime of the S1 state is substantially reduced. This is attributed to the formation of an excited asymmetric tight H-bond complex.
  • Excited-State Dynamics of an Environment-Sensitive Push–Pull Diketopyrrolopyrrole: Major Differences between the Bulk Solution Phase and the Dodecane/Water Interface
    S. Richert, S. Mosquera Vazquez, M. Grzybowski, D.T. Gryko, A. Kyrychenko and E. Vauthey
    Journal of Physical Chemistry B, 118 (33) (2014), p9952-9963
    DOI:10.1021/jp506062j | unige:39940 | Abstract | Article HTML | Article PDF
 
The excited-state dynamics of a diketopyrrolopyrrole (DPP) derivative with push–pull substituents has been investigated in a variety of solvents and at the dodecane/water and dodecane/heavy-water interfaces using a combination of ultrafast spectroscopic techniques, including transient electronic absorption and time-resolved surface second-harmonic generation. Whereas the photophysics of a nonpolar DPP analogue is mostly independent of the solvent, the fluorescence decay of the push–pull DPP accelerates strongly by going from aprotic to protic solvents. As this effect increases with the polarity and the hydrogen-bond-donating ability of the solvent, it is attributed to the occurrence of H-bond-assisted nonradiative deactivation induced by the charge-transfer character of the excited state that favors the coupling of the molecule to the H-bond network of the solvent. At the dodecane/water interface, the excited-state lifetime is longer by a factor of ca. 20 than that estimated in pure water and increases further by a factor of about 3 when going to the dodecane/heavy-water interface. This isotope effect, that is more than twice as strong as that measured in bulk solutions, and molecular dynamic simulations indicate that the slowing down of the dynamics at the interface cannot be solely ascribed to a reduced accessibility of the DPP molecule to the aqueous phase. The slower excited-state decay is rather assigned to the conjunction of several effects, such as the strengthening of the H-bond network formed by the interfacial water molecules and the lower local polarity of the interfacial region.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024